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• There is no guarantee that 𝜋∗ is actually unique

• Different policies can correspond to different behaviours with
different risk profiles

➢ There should exist a distribution of policies

Contribution
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Q-learning

Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An 
introduction,  The MIT Press, second edition 2018

Task 1
Task 2
Task 3

Policies

C
o

u
n

t

Minimum Variance policies

Learning such a distribution would allow to sample different 
optimal policies and choose the one which profile suits the best 
the task needs. 

To learn the policies distribution, it is necessary to sample
different policies with different behaviours on the fly.

We propose a Metropolis based method to generate optimal 
policies while using a curiosity mechanism to ensure that the 
optimal policies generated adopt different behaviours



4

Metropolis Algorithm Principle

The objective: MH algorithm is a MCMC method which aim is to generate samples from a distribution when direct sampling 
is difficult or not feasible

Given a distribution 𝑓 in Ω the algorithm defines a markov chain which stationary distribution is 𝑓. 

• Only requires to know a distribution that is proportional to 𝑓
• Used for sampling from multi-dimensional distributions, in particular 

when the number of dimensions is high

Let ℎ ∝ 𝑓. We choose an arbitrary 𝑥0 as a starting point and a transition distribution 𝑔(𝑥|𝑥0). At each iteration:

• 𝑥 ∼ 𝑔(. |𝑥𝑖) and calculate the acceptation rate: 𝛼 =
h x g xi,𝑥

h xi g x,xi

• As ℎ is proportional to 𝑓: 𝛼 =
h x g xi,𝑥

h xi g x,xi
=

f x g xi,𝑥

f xi g x,xi

• We can choose 𝑔 invertible such as: 𝑔 𝑥, 𝑥𝑖 = 𝑔 𝑥𝑖 , 𝑥

𝛼 =
h x

h xi
=

f x

f xi

If 𝛼 ≥ 𝑢,  xi+1 = 𝑥, otherwise 𝑥𝑖+1 = 𝑥𝑖

𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑚 ∼ 𝑓

• 𝑢 ∼ 𝑈 0,1
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First Adaptation to Reinforcement Learning

Let 𝜃 the parameters of a policy, corresponding to the parameters of a neural 
network which input is the state and outputs an action. 

Let 𝜋𝜃 a policy parameterized by 𝜃 and 𝑓 𝜃 the target distribution. 

Safe hypothesis: Given a policy:

• The higher its mean return the more probable it is that it is an optimal 
policy

• The lower its variance, the more probable it is that it is a mode of the 
distribution

Let 𝑈 a positive monotoningly increasing function of the return that is maximal when the return is maximal, we have:

𝑓 𝜃 ∝ 𝑈 𝜏: a trajectory
G: the mean return
T : a temperature parameter
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First Adaptation to Reinforcement Learning

𝑓 𝜃 ∝ 𝑝(𝜃)𝜂(𝜃) where ∶

To estimate 𝜂(𝜃), we sample several trajectories:

• 𝑝 𝜃 is a prior over 𝜃 (uniform in the simple case) 
• 𝜂(𝜃) the performance depending on 𝑈
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First Results

➢ Succeeding 𝜃𝑖 are heavily correlated, this hints at the 
fact that the behaviours may be identical

• Continuous State space
• Discrete Action space

Average return for every new θ (in blue) and incremental count of the number of  𝜃𝑖 retained 
(in orange) on Cartpole (left) and Acrobot (right) using simple implementation.

Cosine similarity between pairs of retained θi on Cartpole (left) and Acrobot (right) using 
simple implementation.
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➢ the simple approach fails when confronted to Gridworld or Cliff. In both cases, the agent remains stuck, always 
performing the same action

First Results
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CAMEO (prior and bootstrap)

We considered that 𝑝 𝜃 ∼ 𝑈[−𝑎, 𝑎]

The priors cancel each other and therefore 𝜃𝑖 are not 
bounded. 

𝜃 𝑘+1 = 𝜆𝜃𝑘 With 𝜆 a constant

A solution is to measure the variance of 𝜃 from the 
interval [-1,1]

Therefore the new prior is: 

Prior:

-1 1

𝜃

Goal: Avoid running N episodes twice to estimate the returns

Advantage function:

Trajectory Bootstrap:

TD Error
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Sparse Rewards in RL

The only areas with positive reward are the final states. All other areas (excluding the holes) have reward -1

The reward is not informative on the agent’s progression
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Metropolis Algorithm
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CAMEO (Results)
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Conclusion and perspectives

➢ We were able to generate several optimal policies with different behaviours on the fly

➢ First mandatory step towards learning the distribution of optimal policies itself

➢ It is possible to replace the standard proposal distribution with a policy guided proposal that draws educated samples.

The new distribution could therefore explore larger spaces by focusing on areas of interest

Take home messages:

➢ But only works for environments with discrete action spaces

Perspectives:

➢ Study the theoretic foudations explaining the similarity with GANs in order to 
use them to learn the distribution and generate optimal policies
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