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Optimal Policies in Reinforcement Learning

State s, o o]
Reward r, tgl G =E[rg +vyr1 + ’“;"2’}"2 + .. .’)/tfr't + ... |s0]
Agent
" J Converges towards an
Action a |I optimal policy *
t maximizing the return G
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Contribution

SARSA

* There is no guarantee that ™" is actually unique

D-leanning

» Different policies can correspond to different behaviours with

different risk profiles s G -

Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An
introduction, The MIT Press, second edition 2018

» There should exist a distribution of policies

Learning such a distribution would allow to sample different Lok

Task 2
optimal policies and choose the one which profile suits the best l Task3

the task needs. Minimum Variance policies

11

To learn the policies distribution, it is necessary to sample
different policies with different behaviours on the fly.

Count

We propose a Metropolis based method to generate optimal
policies while using a curiosity mechanism to ensure that the
optimal policies generated adopt different behaviours

N

Policies




Metropolis Algorithm Principle

The objective: MH algorithm is a MCMC method which aim is to generate samples from a distribution when direct sampling
is difficult or not feasible

Given a distribution f in Q the algorithm defines a markov chain which stationary distribution is f.

* Only requires to know a distribution that is proportional to f
e Used for sampling from multi-dimensional distributions, in particular
when the number of dimensions is high

Let h < f. We choose an arbitrary x, as a starting point and a transition distribution g(x|x,). At each iteration:

* x ~ g(.|x;) and calculate the acceptation rate: a = %
o i : o h®axyx)  f(x)gxg,x) o = h(x) _ f(x)
As h is proportional to f: a = el o S e = o0

» We can choose g invertible such as: g(x, x;) = g(x;, x)

If « = u, Xj41 = x, otherwise x;,1 = x;
c u~U01]  —

X Xn+1s -0 Xntm ~ f
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First Adaptation to Reinforcement Learning
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Let 6 the parameters of a policy, corresponding to the parameters of a neural
network which input is the state and outputs an action.

Let y a policy parameterized by 6 and f(0) the target distribution.

Safe hypothesis: Given a policy:

* The higher its mean return the more probable it is that it is an optimal
policy

* The lower its variance, the more probable it is that it is a mode of the
distribution

Let U a positive monotoningly increasing function of the return that is maximal when the return is maximal, we have:

f(O) U T: a trajectory

= G: the mean return
U(r) = exp(G(1)/T) T : a temperature parameter

i
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First Adaptation to Reinforcement Learning

Algorithm 1 Monte Carlo-within-Metropolis for RL

Require: /A : the number of iterations. N: number of episodes

f(8) x p(0)n(0) where : Initialise Agent 7

* p(0) is a prior over 8 (uniform in the simple case)
* 1n(0) the performance depending on U

n(0) = Ep(r1)[U(T)] = [ U(7)p(7|0)d7

To estimate 1(6), we sample several trajectories:
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First Results

Environments Cartpole Acrobot
Snapshot
-
State Space s; € R* [—1,1]* x [—4m, 47| x [~97, 9]
Action Space a; € {0,1} {0,1,2}

Reward r; =

+1 per time step

-1 per time step

5

16151413121110 9 8 7 6

Cosine similarity between pairs of retained 0i on Cartpole (left) and Acrobot (right) using

simple implementation.

7 8 910111213141516

9363330272421181512 9 6 3

* Continuous State space
* Discrete Action space

200 1 — Retumn ) V'W/ 200 1 — Retum
Count ! Count
175 | 100 ’
150 [ 0
125
100 3
o -200 ‘
5 y
s ‘ .,&'
50 [ -3001 J
pL3 [A/‘"J -400
0 -500
0 25 50 5 100 125 150 175 200 0 100 200 300 400 500

Average return for every new 0 (in blue) and incremental count of the number of 6; retained
(in orange) on Cartpole (left) and Acrobot (right) using simple implementation.

» Succeeding 6; are heavily correlated, this hints at the
fact that the behaviours may be identical
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First Results

CIliff Gridworld

Environments
Snapshot
3 p

s TR

State Space s; € {1,...,48} {1,...,16}
Action Space a; € {0,1,2,3} {0,1,2,3}
Reward r; = -1 per move, 10 for the goal and -10 for the pit | -1 per move, 10 for the goal and -10 for the pit

» the simple approach fails when confronted to Gridworld or Cliff. In both cases, the agent remains stuck, always

performing the same action
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CAMEOQ (prior and bootstrap)

Prior:

We considered that p(8) ~ U[—a, a]
pUN(0)

B+

The priors cancel each other and therefore 6; are not

bounded.

O¢k+1) = A0, With A a constant

A4(S) 4

l

S1,A51,52, 45,

p(Ge=)UN (0 —1)

Trajectory Bootstrap:
Goal: Avoid running N episodes twice to estimate the returns
Advantage function: Ag(s,a) = Qg(s,a) — Vy(s)
G(Q’) = G(gkfl) + Ko [Z ’)/tAE)f(St, at)-‘
~ G(@kfl)

+ Es,awp(ﬁk_l),wgkil [H(f + ’Y(V?TE,.' (5/) - V?Tgk_l (‘S))] ’

fs,)A o fSn) A8

| |
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Sparse Rewards in RL

s IO

The only areas with positive reward are the final states. All other areas (excluding the holes) have reward -1

mmmm) The reward is not informative on the agent’s progression

Froduces
] prediction error
Prediction module | -
. -
+ Agent
-~ -
Environment -
Produces
reward

|- 10
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CAMEO (Results)

......

BBIBEEYBE o

nnnnn

N" : \ | 7 AR ABRERRE AT RERBRRRIN CUARRIAIRNBBRININAINGBRY

3 [ ORI | P

Fig. 3: CAMEO Results on Cliff (above) and Gridworld Fig. 4: Cosine similarity between pairs of retained 6; on Grid-

(below). The figure presents the mean return, the Prediction world (left) and Cliff (I‘igh[) using CAMEO implementation.
error and the count of #; retained over time steps

) CLIFF G

Fig. 5: State visitation frequency aggregated on 100 policies
obtained using CAMEO on Gridworld and CIliff. Less visited
states are in light blue and most visited ones in dark shade

s 1 2

= || eseas
EUSIPCO



Conclusion and perspectives

Take home messages:
» We were able to generate several optimal policies with different behaviours on the fly

» First mandatory step towards learning the distribution of optimal policies itself

Perspectives:
» But only works for environments with discrete action spaces
Environments Cliff Cartpole Acrobot Gridworld
Snapshot
5 B
= I
-
State Space s; € {1,...,48} R? [-1,1]T x [—4r, 4x] x [-9m, O7] {1,...,16}
Action Space a; € {0,1,2,3} {o,1} {0,1,2} {0,1,2,3}
Reward r; = -1 per move, 10 for the goal and -10 for the pit [ +I per time step -1 per time step -1 per move, 10 for the goal and -10 for the pit

» It is possible to replace the standard proposal distribution with a policy guided proposal that draws educated samples.
The new distribution could therefore explore larger spaces by focusing on areas of interest

V7’
» Study the theoretic foudations explaining the similarity with GANs in order to Treining se / 1 . Discriminator
use them to learn the distribution and generate optimal policies — a7 @@
| ﬁ@ ¢

Generator
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